

Mismatch of Expectations: How Modern Learning
Resources Fail Conversational Programmers

ABSTRACT

Conversational programmers represent a class of learners

who are not required to write any code, yet try to learn pro-

gramming to improve their participation in technical con-

versations. We carried out interviews with 23 conversation-

al programmers to better understand the challenges they

face in technical conversations, what resources they choose

to learn programming, how they perceive the learning pro-

cess, and to what extent learning programming actually

helps them. Among our key findings, we found that conver-

sational programmers often did not know where to even

begin the learning process and ended up using formal and

informal learning resources that focus largely on program-

ming syntax and logic. However, since the end goal of con-

versational programmers was not to build artifacts, modern

learning resources usually failed these learners in their pur-

suits of improving their technical conversations. Our find-

ings point to design opportunities in HCI to invent learner-

centered approaches that address the needs of conversation-

al programmers and help them establish common ground in

technical conversations.

Author Keywords

Conversational programmers; learner-centered design; pro-

gramming literacy; technical conversations.

ACM Classification Keywords

K.3.2 Computers and Education: Computer and Information

Science Education—literacy, computer science education.

INTRODUCTION
Considerable research efforts have been devoted to human-

computer interaction (HCI) and computing education re-

search towards lowering the barriers to learning program-

ming. Many of these efforts have contributed innovative

tools and approaches to support the programming needs of a

variety of learners, such as computer science (CS) students

[17,28,53], end-user programmers [14,15,30,32] and profes-

sional programmers [1,3,13]. A large focus of these projects

has been on improving learners’ understanding of program-

ming syntax and logic and facilitating interaction with fea-

ture-rich programming environments as these are known to

present key challenges for new learners.

Unfortunately, most of what we know about the programming

learning process and the challenges that learners face is based

on studies of students in the classroom [53] or professionals in

industry [1]. Only recently have we started seeing studies into

informal learning processes among non-traditional popula-

tions, such as designers [15], high school teachers [43], and

older adults [22]. Given this increased diversity in learning

needs and the backgrounds and skills of programming learn-

ers, there have been increased calls [24] to better understand

the goals of such diverse learners and their interaction with

modern learning resources.

Pushing on this idea of learner diversity, recent work sug-

gests that there is a unique class of learners who are moti-

vated to learn programming, but never actually need to

write code [7,8]. These learners are termed as conversational

programmers as they seek to acquire programming skills

only to engage more effectively in technical conversations or

to improve their job marketability (e.g., in marketing, sales,

UI design, or management). Although prior work has estab-

lished the existence of such a population of conversational

programmers at a single technology company [8] and in the

classroom [7], do such people exist more broadly in other

more diverse settings and similarly learn programming to

improve technical conversations? Several other questions

also remain unanswered: how do conversational program-

mers actually approach learning programming when their

goal is not to write code? To what extent are their learning

approaches similar or different from other non-traditional

learners, such as end-user programmers? And, do conversa-

tional programmers even find it useful to learn program-

ming to improve their technical conversations?

In this paper, inspired by the idea of learner-centered design

[24,51], we investigate the learning needs and strategies of

conversational programmers. We took a qualitative ap-

proach for this investigation and recruited a broad range of

people representing different professions in local companies

and educational and non-profit institutions (e.g., archivist,

artist, entrepreneur, HR coordinator, admin staff, psycholo-

gist, event manager, marketing assistant, medical instructor

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permis-

sion and/or a fee. Request permissions from Permissions@acm.org.

CHI 2018, April 21–26, 2018, Montréal, QC, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5620-6/18/04…$15.00

https://doi.org/10.1145/3173574.3174085

April Y. Wang
1
, Ryan Mitts

1
, Philip J. Guo

2
, and Parmit K. Chilana

1

1
Computing Science

Simon Fraser University

Burnaby, BC Canada

{ayw7, rmitts, pchilana}@sfu.ca

2
Design Lab

UC San Diego

La Jolla, CA USA

pg@ucsd.edu

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 511 Page 1

mailto:Permissions@acm.org
https://doi.org/10.1145/3173574.3174085

and visual designer). We carried out 23 interviews (14 fe-

male) with a diverse set of participants who did not have a

formal degree in CS, did not work in an engineering role,

and were not required to write code on the job, but had tried

to learn programming. Our interviews focused on uncover-

ing the kinds of challenges these conversational program-

mers faced in technical conversations and how and why

they made use of different approaches and modern re-

sources for learning programming. The interviews also

probed into the participants’ perceptions of whether or not

their efforts in learning programming were actually helpful

for their conversations or other aspects of their jobs.

Our key findings illustrate a variety of challenges and misun-

derstandings that conversational programmers can encounter

in technical conversations and that can eventually motivate

them to explore programming. However, we found that most

conversational programmers often do not know where to

even begin the learning process and typically seek recom-

mendations from other programmers or rely on popular web

search results. This leads them to invest in formal and infor-

mal learning strategies that are typically designed for profes-

sional or end-user programmers and heavily focus on syntax

and logic issues in code. However, since the end goal of con-

versational programmers is not to build artifacts, a mismatch

ensues between their expectations and what these learning

resources offer, with conversational programmers often feel-

ing like they have failed.

The main contribution of this paper is in providing empirical

evidence characterizing the unique learning needs of conver-

sational programmers, how these needs differ from popula-

tions of end-user programmers and professional program-

mers, and how modern learning resources that focus on arti-

fact-creation can fail conversational programmers.

RELATED WORK

Our study builds upon prior work in HCI and computing

education that focuses on non-traditional learner popula-

tions (e.g., learners who are not CS majors or professional

programmers) and how people interact with formal and in-

formal programming learning environments.

Studies of non-traditional programmers

End-user programmers were among the first group of non-

traditional programmers to receive attention in the literature.

This class of programmers consists of people who write code

not for professional software development tasks, but to solve

a domain-specific problem or to improve their productivity in

a particular domain [32]. It is estimated that the population of

end-user programmers is much larger than professional pro-

grammers [47], and many studies have been carried out to

understand why and how different groups of end-user pro-

grammers learn programming. For example, web designers

and data scientists write scripts for domain-specific project

needs, and they mainly learn by “head-first” and “trial and

error” methodologies [13,15,28] often by consulting books,

code examples, blogs, and forums [14,15].

Recent studies show that another emerging non-traditional

learner population consists of conversational programmers

[7,8]. Past surveys indicate that this population is mainly

motivated to learn programming to improve the efficacy of

technical conversations and to acquire marketable skillsets.

Although there was some indication that conversational pro-

grammers at a large technology company were using online

resources, courses, books, and help from colleagues to ac-

quire programming skills, prior work does not provide any

insights into the actual learning strategies and approaches

used by these learners, and whether they actually succeeded

in improving their technical conversations. Our work adds

insights into how conversational programmers exist in di-

verse job sectors, how and why they use different learning

resources, and how they perceive those available resources.

K-12 teachers tasked to teach CS are another group of people

who learn programming on-the-job [43,44], and they share

some similarities with conversational programmers. Alt-

hough teachers may never need to write code on-the-job [43],

they still need to understand programming syntax and logic

since they need to teach those in class, grade coding assign-

ments, and answer coding-related questions. There is some

indication that these teachers can have feelings of isolation in

the learning process and may benefit from having their own

dedicated learning communities. Our study found similar

sentiments amongst conversational programmers.

Formal learning environments for programming

Formal learning is defined as an activity that has a struc-

tured curriculum with clearly defined objectives carried out

within a defined schedule, such as a school or college

course, or a workshop [52]. Research on non-CS major stu-

dents taking intro CS courses [7,19,56] revealed that not

everyone learning programming intends to become a pro-

fessional programmer, and traditional intro CS courses

failed to engage non-CS major students. With growing calls

for learner-centered design [24], some recent work has ex-

plored formal ways of making programming relevant for

non-CS students [19,20,23,25,40]. For example, efforts

have been made to teach programming skills in the context

of media computation [23,25], and introducing the concepts

of natural language processing (NLP) and artificial intelli-

gence (AI) in a non-programming context [35].

In addition to traditional K-12 and college classrooms,

MOOCs (Massive Open Online Courses) for programming

have become popular among some adult learners [18,59].

Other emerging formal learning environments include coding

bootcamps where adults who want to improve their practical

coding ability can focus on particular topics for a short period

of time. Although these formal learning methods require less

of a time investment than college courses, doubts have been

raised about whether bootcamps or MOOCs actually work

for people who seek to improve their employment prospects

[29,54]. Our study further reveals that these formal ap-

proaches present cost vs. benefit tradeoffs that are even more

acute for conversational programmers, making them less

popular among this population of learners.

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 511 Page 2

Informal learning resources for programming

In contrast to formal learning, informal learning consists of

activities that are unstructured, self-directed, and initiated in

response to some need, often on-the-job [41,52]. The learn-

er typically self-manages this type of learning and focuses

on improving certain skills or addressing specific gaps in

knowledge. In terms of informal ways of learning pro-

gramming, considerable attention has been paid to investi-

gate how people can learn programming online.

For example, several studies have examined why and when

online interactive coding tutorials are useful [27,31,36].

Although these tutorials can help learners with artifact-

creation needs (e.g., professional or end-user programmers)

get started, their utility is perceived to be limited as tutorials

are rarely tailored to learners' prior coding knowledge. Our

study further shows that even conversational programmers

experience feelings of failure with such informal resources,

but for different reasons. For example, for conversational

programmers the key drawback is that these informal re-

sources focus mostly on syntax and logic issues and provide

less conceptual explanations.

Another class of research has explored informal learning

and information seeking behaviors on discussion forums for

novice programmers [3,38]. These forums effectively facili-

tate discussion and peer-to-peer knowledge exchange

among learners writing code [38,46,49]. But, as discussed

in prior work [17,40], we also found that the identity of the

user and type of forum can affect how well users participate

in these discussions. Furthermore, we found that conversa-

tional programmers often felt like “outsiders” in communi-

ties targeting artifact creation needs.

METHOD

To study the learning strategies of conversational pro-

grammers, we conducted semi-structured interviews with

23 participants from a variety of backgrounds (Table 1).

Participants and Recruitment

We recruited self-identified conversational programmers

through personal connections and snowball sampling, adver-

tising posters at educational organizations, and through mail-

ing lists of local meet-up groups for programming over a 4-

month period in 2017. Our participants had to fit the follow-

ing criteria to take part in the interviews: 1) not have a formal

degree (or even a minor) in computer science, engineering or

IT; 2) not be working in any kind of a software development

or engineering role or any role requiring programming on-

the-job; and, 3) must have recently tried to

learn programming or CS either informally or formally.

We ended up with 23 study participants (14 female) as we

aimed for diversity in job roles, age, and gender. As shown in

Table 1, our participants held a variety of positions (e.g.,

artist, psychologist, pharmacist, entrepreneur, library archi-

vist, bank clerk, medical instructor). They also brought in

different levels of experience, ranging from being an intern to

a senior manager with 20 years of experience.

The interview instrument

Before the interview, we collected basic demographic in-

formation through a questionnaire (e.g., age, gender, occu-

pation, education and previous experiences with program-

ming languages). We began the interview with some warm-

up questions. For example, we asked them to describe their

current work and recall the most recent situation in which

they were required to have a technical conversation.

Next, we asked questions about their learning process and

strategies, focusing on resources they used, in which situa-

tion they used those resources, how they knew where to

look at resources and to what extent they found the re-

sources to be useful. Initially we used common resources

for learning programming to prompt the participants if nec-

essary (e.g., programming courses, books, online documen-

tation, Stack Overflow, MOOCs). After the first five inter-

views, we updated this list with additional informal re-

sources that came up in the interviews so far (e.g., Wikipe-

dia, articles, news, blogs, magazines, YouTube videos).

Lastly, we ended the interview by probing into conversa-

tional programmers’ perceptions of the learning process,

asking them to reflect on what they felt they achieved after

all their learning efforts and whether (or not) they wanted to

keep learning programming in the future.

Data Analysis

We transcribed the audio recordings and did an open coding

of the data using ATLAS.ti. We used an inductive analysis [12]

approach and affinity diagrams to explore the themes around

our main research questions. Three members of the research

team first began with an open coding pass to individually

create a list of potential codes. Upon discussion and use of

affinity diagrams, a single coding scheme was devised and

two team members independently coded two of the tran-

scripts using this scheme. The first pass inter-rater reliability

test achieved a Kappa score of 0.61 as there was some confu-

sion about redundant codes and where they should be used.

ID Age Occupation ID Age Occupation ID Age Occupation

P1 31-40F entrepreneur P9 19-30F advertising manager P17 41-50M product manager

P2 19-30M visual designer P10 31-40F health scientist P18 31-40F humanities scholar

P3 41-50F bank clerk P11 19-30F library archivist P19 19-30F artist

P4 41-50F HR coordinator P12 19-30M business assistant (intern) P20 31-40F marketing coordinator

P5 19-30M helpdesk support (intern) P13 19-30M product manager P21 19-30M business assistant (intern)

P6 51-60F pharmacist P14 19-30F HR coordinator P22 51-60F medical instructor

P7 19-30M business development manager P15 19-30F university administrative staff P23 31-40F psychologist

P8 19-30M marketing coordinator P16 19-30M marketing assistant (intern)

Table 1. Our participants from local companies and educational and non-profit institutions represented a diverse range of occupations

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 511 Page 3

Upon further discussion and iteration with the research team,

we revised the coding scheme, merging the potentially over-

lapping codes and removing the infrequent codes. Next, the

two raters applied the revised coding scheme on a new subset

of interview transcripts, achieving a higher Kappa score of

0.87. We next used axial coding to discover relationships

among emerging concepts, followed by selective coding to

identify recurring themes.

Presentation of Results

Our analysis revealed a number of themes and next we focus

on presenting key results on why conversational program-

mers wanted to learn programming, how they approached

learning programming, how they perceived and struggled in

the learning process, and, paradoxically, why they still had a

positive attitude towards learning programming.

KEY REASONS FOR LEARNING PROGRAMMING

As shown in Table 1, our study participants were profession-

als and domain experts in a variety of roles and did not need

to write code on-the-job. In their responses to motivations for

learning programming, we saw many similar responses to

previous studies [7,8] of conversational programmers: our

participants mainly wanted to learn programming to improve

their technical conversations (16/23) or to enhance their fu-

ture marketability (7/23). In addition, some participants were

interested in using their programming skills to perform end-

user programming tasks (5/23), to gain credibility with their

technical team members (4/23), and to stay current with digi-

tal trends and technology developments (4/23).

Given that a key motivation for learning programming was

improving technical conversations, we first shed light on why

our participants found it challenging to converse with devel-

opers and other technical personnel.

Challenges in understanding the context of conversations

Participants commonly reported that they felt lost in under-

standing the full context of implementation decisions made

by software developers that involved low-level details or

high-level concepts, such as machine learning.

Some participants said they found it difficult to follow

along and make sense of important technical conversations

because they simply did not have a shared vocabulary. For

example, an advertising manager described her challenge in

interpreting the data that the development team collected

for campaign planning:

We do a lot of the advertising work on the internet and we have

programmers who gather data for planning campaigns. I always

need to contact them to figure out how they collect it. So, the

conversations are very difficult... especially when they mention

terminologies around network, database, big data, and algo-

rithms... I feel like I have to learn from the beginning, and that's

why I am learning Python right now. (P9)

In other cases, conversational programmers were not only

required to listen and understand the technical conversa-

tions, but also to be able to talk using technical terminology.

For example, an entrepreneur from a local start-up company,

who was usually invited to give keynotes on innovation

strategies or investment pathways, explained how she had

to make sure her understanding of certain terminology was

“100% accurate”:

If something was wrong about a technical concept [that I

learned], and then if I were to say it in front of people who are

world leaders…that would be embarrassing. (P1)

Challenges in building rapport

In addition to better understanding the context during tech-

nical conversations, our participants were motivated to

learn programming to build rapport with technical people as

well. Our participants’ narratives revealed how they often

experienced strains in their professional relationships or felt

ignored because of their lack of programming knowledge:

…the programming people tend to be not interested in talking

to me. We don’t really speak the same language. (P3)

By learning programming, some participants felt they could

gain respect and credibility from their technical teams. For

example, a business development manager whose job was

to provide customer feedback to developers said:

…if you can write code or you can understand code, developers

respect you more…they would “let you in” …when you're hav-

ing a conversation it's easier for you to get what you want. (P7)

Another participant working in a technology consulting com-

pany found it useful to socialize with developers by better

understanding and making programming-related jokes:

Our company has a shared space as resources for other compa-

nies to use…I became close friends with a number of companies,

as well as, a lot of them are our clients as well... Learning some

basic syntax, I was able to joke about basic stuff like, “Man, I

messed up one comma, and I've messed up my entire code!”

Little jokes and nuances that people who know the language can

laugh about really helps me start the conversation. (P13)

In summary, our participants were mainly motivated to

learn programming because they believed that it would help

them better understand the context of technical conversa-

tions and build rapport with technical people on the other

side of these conversations.

APPROACHES USED FOR LEARNING PROGRAMMING

To investigate how conversational programmers tried learn-

ing programming, we focused on eliciting the different ap-

proaches and resources that our participants attempted to use.

Beginning the learning process

Most of our participants (19/23) mentioned that they often

did not even know where to start the learning process and

their first instinct to learn programming was to ask an expert

(e.g., a colleague, friend, or more technical family member):

I think if I had a programming background, I probably would

have been able to find information a lot easier and quicker, but

because I had to browse through so much and I didn't under-

stand some of the lingo…so, I found it easier just to ask my

developer-colleagues like what website should I go to if I want

more information on this [programming language]. (P20)

In fact, participants reported that they relied on experts

throughout the learning process: to confirm the relevance of

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 511 Page 4

what they found online, to seek definitions or clarifications

of technical terms, or to help them debug the coding prob-

lems that were encountered during the learning process.

Another approach to getting started that participants de-

scribed was that they would just try to search online and try

to follow the top search results. Several participants de-

scribed how they relied on Google in particular to look up

programming-related definitions of terminologies:

When I google search these terminologies, I click on Wikipedia

all the time because Wikipedia pops up quite heavily in the

first few search columns. (P13)

Using guidance from an expert or suggestions from online

search, our participants ended up investing in different formal

and informal learning approaches described below. Overall,

participants mentioned trying out 21 different programming

languages (e.g., HTML, CSS, JavaScript, Python, PHP, Ruby,

SQL, R, VBA) as well as finding information on over 20 dif-

ferent technical concepts, such as “machine learning”, “big

data”, “cloud computing” and “blockchain”.

Formal and informal learning approaches

We summarize the key formal and informal learning ap-

proaches described by participants in Table 2. Although our

participants were more likely to use informal learning re-

sources, a few participants had invested in even paid formal

methods to seek more guided instruction, such as in-person

short-term college programming courses (2/23), attending

bootcamps or programming workshops (7/23), and signing

up for free online courses (6/23) through Lynda.com,

Coursera, and CS50 at Harvard.

Since our participants had tried many types of informal ap-

proaches, we have categorized their top responses below.

Online reference resources: Some participants sought in-

formation on explanations of terminology and usage of API

instructions using online reference resources usually suggest-

ed in search results. Many participants (10/23) visited online

documentation sites, such as coding reference sites (e.g.,

W3Schools) and service/product sites (e.g., Amazon Web

Services). Similarly, Wikipedia was also widely used by par-

ticipants (9/23), particularly for checking definitions of un-

familiar terminologies brought up in technical conversations.

Forums: Most of the participants (16/23) had come across

online forums, such as for specific services, (e.g., Word-

Press, Drupal), coding forums (e.g., Microsoft forums) and

general-purpose platforms (e.g., Quora, Reddit, Facebook

Groups, Slack Groups) to seek information related to pro-

gramming. However, participants were not actively in-

volved in typical online communities for developers. For

example, most of the participants (18/23) had never used or

even heard of Stack Overflow. Among the 16 participants

who had tried forums, only 3 participants contributed to it

(e.g., posting a thread or replying on others' threads).

Online coding tutorials: Several participants mentioned that

they attempted to self-teach programming by following

online coding tutorials. Among these tutorials, step-by-step

YouTube videos appeared to be the most popular among our

participants (10/23), followed by text-based interactive tuto-

rials (8/23) that included Codecademy, FreeCodeCamp, and

CSS tricks. Participants mentioned trying out online tutorials

particularly for web development topics.

Popular press: Lastly, several participants (9/23) mentioned

that they subscribed to technology-related online content to

broaden their perspective of cutting edge technology and

developments. These resources included technology-related

podcasts and popular press, such as New Scientist Magazine,

Peter Diamandis’s blog, Tech Insider, Forbes, Bloomberg,

CNN, Guardian, TechCrunch, and company newsletters.

PERCEPTIONS OF THE LEARNING PROCESS AND
FEELINGS OF FAILURE

As described above, our participants had engaged in a va-

riety of informal and formal learning strategies based on

recommendations from developers or other technical ex-

perts or by searching online. In reflecting back on their

original motivations to mainly improve technical conversa-

tions, unfortunately, most participants felt that they did not

get much benefit from investing the time and effort on these

programming resources and expressed feelings of failure. In

fact, only 6 participants reported that learning programming

was useful for technical conversations, and only 3 partici-

pants felt confident enough to mention programming as a

skill on their CV or during a job interview.

In this section, we present a synthesis of the six common rea-

sons that conversational programmers felt they failed when

using modern learning resources (summarized in Table 3).

Takes too much time

Since conversational programmers were not required to

write code as their regular day job, the time they could

commit to learn programming was limited (consistent with

other studies on adult learners [24,59]). Whether or not us-

ing a certain resource would be time-consuming was a con-

cern raised by most of the participants.

Although formal approaches provided a systematic learning

environment with assistance from an instructor, our partici-

pants did not consider them to be practical because they re-

quired the most time commitment. For example, most partic-

ipants (21/23) did not sign up for in-person courses because

they felt it was not necessary to take a course or they simply

did not have enough time to take it. Even though some partic-

ipants did sign up for MOOCs and other online courses (6/23)

Formal approaches

In-person courses (e.g., night courses at community colleges)

Bootcamps & workshops (e.g., HTML bootcamp; Python one-

day workshop)

Online courses (e.g., Lynda.com, Coursera, Udacity, edX)

Informal approaches

Online reference resources (e.g., W3Schools, Wikipedia, com-

pany's internal references site, specific services such as Drupal)

Forums (e.g., Reddit, Quora, Stack Overflow, Facebook Groups)

Online coding tutorials (e.g., Codecademy, FreeCodeCamp)

Popular press (e.g., Tech Insider; Bloomberg; TechCrunch)

Table 2. Formal and informal resources used by participants

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 511 Page 5

and could leverage the convenience of distance learning,

most participants ended up being busy with their day job and

found it difficult to maintain focus and commit time for com-

pletion:

I am learning JavaScript in CS50. It's a real Harvard lecture,

so you have students from Harvard attending it and they just

film the thing. But I have given up on it several times... This is

my fourth time taking CS50, or fourth time attempting to...

Every time I get caught up with other work or I'm too busy. (P7)

Although informal resources were perceived to be easier to

use, they could also be time-consuming because conversa-

tional programmers did not have enough background to

“have the vocabulary to phrase the questions” (P18). They

often ended up spending hours and “finding nothing that's

really useful” (P6). For example, one participant com-

plained that going through non-relevant YouTube videos

could be a huge time sink:

So sometimes there might be stuff [in videos] you already know

or stuff that you just do not care about. Sometimes it could

even be an advertisement. A lot of garbage, no kidding. But

you only know it after watching [the whole video]. (P14)

Too much focus on syntax and logic

In their initial learning approach, conversational program-

mers were influenced by many preconceptions such as, “to

learn programming, you have to write code. It's just like

learning to drive a car, you cannot learn without running a

car” (P18), or they feel like they “have to start from the be-

ginning” (P8). Therefore, the majority of participants (18/23)

had devoted some time to learn to code in a specific language.

However, after signing up for an online course or using

online tutorials to learn a specific programming language,

not many participants found it helpful enough with building

common ground in technical conversations. For example,

P11 admitted that going through the online coding tutorials

did not help so much with understanding the big picture:

I think they [coding tutorials] were very good like instructional-

ly… But, what I definitely needed is to be able to talk…just being

able to write code, I find that I am missing out on some kind of

larger understanding. (P11)

Another participant who paid time and money to attend an

introductory level bootcamp mentioned that she “wouldn't

take it again” because she felt that these bootcamps were

designed for people pursuing careers as software developers

and often became more technical than she expected:

It [the bootcamp] was overwhelming…the coding skills they

taught is to enable somebody to parachute into a web devel-

opment job...not what I expected...(P6)

One of our participants who was a university administrative

staff and worked closely with students in CS, described her

experience after attending a coding workshop in Python:

I did the "Python Ladies Learning Code", an all-day introductory

workshop…I thought it was obviously super helpful for me to

understand a little bit about programming since I'm talking to CS

major students all the time... But I don't know if it actually helps.

I mean it's so basic level coding, right? Although I had several

lines of codes working and printed sentences on the screen in that

workshop, I can't recall anything tangible now. (P15)

Explanations are not relevant

Several participants mentioned that when they were interact-

ing with programming-related resources, their main goal was

to seek conceptual and application-related explanations:

… when I am learning about cache and cookies [on online

documentation], I don't want to know if I have to use 'loop' or

'if-else' or anything like that, I want to know what it can do for

me, like the user side of it. (P9)

Participants gave up on resources that did not give enough

information on the bigger picture of concepts:

I have given up on a YouTube channel because they were devi-

ating from what I want to learn and they were getting like a lot

deeper than I wanted. And especially that channel was like for

people who want to do the programming…they spent less time

for the bigger concept. (P5)

Understanding the limitations and benefits of programming

or technology choices was important for conversational

programmers, but such explanations were not always avail-

able in programming learning resources:

...if they [developers] are saying, “Oh, we are going to use a

library X to do this”, I think it would be good to know, ok…what

does that mean, how much time and money does it take to use

library X, how much does it improve performance of the data-

base? I searched [for] any websites that have the information

out there, and haven't really seen anything related to that. (P20)

In addition to the limitations and benefits, participants men-

tioned that they also needed to know the difference between

certain terms or to connect the terms to a working process:

Sometimes I need to know like how it's different from some-

thing else or how it relates to something else. For example,

like machine learning and deep learning.... I saw a blog on

that, talking about...like neural networks... I can't remember,

but like very technical and low-level explanations. (P15)

Lastly, participants also sought explanations on software

engineering processes and development structures. For ex-

ample, one participant who was an HR coordinator ex-

plained how she wanted to know about “how development

teams are structured” since she was “in charge of hiring

and interviewing future developers to the company.” (P14).

Since the target users of introductory learning resources are

traditional programmers who will build artifacts [26,31,54],

most of these resources concentrate on teaching syntax and

logic, and problem solving skills. As a result, conversational

programmers in our study struggled to find relevant concep-

tual and application-related explanations in these resources.

Difficult to assess the content’s reliability

Professional programmers or end-user programmers who

write code can often use “trial and error” to verify whether a

tip or suggestion from a learning resource actually works in

code [3,15,30]. However, conversational programmers ex-

plained that they did not have the opportunity use “trial and

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 511 Page 6

error” in conversations and the stakes were higher in getting

accurate definitions and explanations from a resource.

Although online search was popular among conversational

programmers, they did not often trust the search results and

still wanted confirmation from colleagues or friends:

There is so much garbage on the internet that if you search

something that does not look like an incredible website then I

want to verify it with a human being. And all my colleagues

would just be like, “Hey, stop googling it!” (P1)

Participants also doubted the credibility of community-

based sites. For example, only half of the participants who

tried forums (8/16) felt that they got anything useful from

forums—the rest had strong negative opinions:

…when I browse the questions [on forums], the people who

originally posted do not give follow-up details on whether the

answers worked or not…I understand part of it and then I am

not sure if the person actually got it [to work]…(P9)

In addition, participants raised concerns about whether or

not to trust the accuracy of the content being presented in

other resources, such as YouTube videos. One participant

who was a marketing coordinator expressed doubts on the

utility of watching free videos and stated a preference for

instead relying on paid courses on sites like Lynda.com:

It's hard to gauge if these people [video authors] are profes-

sionals or if this is an accurate way of doing it. So I use

Lynda.com now, our company has a subscription for that and

lots of my colleagues are using it. (P8)

Feelings of social isolation

Since most of our participants were domain experts in a non-

technical role, they tended to stay away from certain re-

sources because they felt uncomfortable, stressful, and isolat-

ed in environments where the target learners were perceived

to be more experienced or even professional programmers.

One of the participants who attended a bootcamp found it

stressful to keep up with people who already had some

knowledge of programming:

Because my classmates were not newbies at what they were

learning...the level that I had to try to reach to them [was

hard] … I was constantly trying to catch up and understand. (P6)

Despite the convenience of relying on experts, some partici-

pants described the social cost of bothering people who were

already overworked by asking them naive questions. For

example, one participant who was learning through Co-

decademy said that he would never ask any of his developer

colleagues for help:

I mean, I know any one of my colleagues could solve any of my

problems, in about six seconds. But the point is not to ... They

already have their own work to do and for me, this is again,

it's not critical to what I do, and it's not worth spending the

company resources to do that. And again, my friends know I

don't code, so they don't want to help me with that. (P17)

Sometimes when conversational programmers referred to an

expert for help, they were hesitant to ask follow-up questions

because they “did not want to look stupid” (P8). One partici-

pant even said that, “I pretend I kind of understand what he

[the expert] is talking about and rather figure it out later by

myself” (P4). It could also be embarrassing to ask an expert

to re-explain a concept he or she had previously described:

What I hate is like they explain it to me and I still don't get it.

That's the worst. Because with the internet, it doesn't matter. I

can keep googling. With people, it's just, I don't know, it's a little

embarrassing. (P15)

When using online learning resources and forums where

there was less of a direct social cost, participants reported

that sometimes they still felt like an outsider. None of the

participants had contributed to developers’ communities like

Stack Overflow. Their general perceptions were negative:

[Stack Overflow] They're often populated by developers, not

for the lay person. So again, the assumption that you under-

stand concepts and things already to a certain level is already

inherent in there. And quite frankly, a lot of developers are

jerks. It can be pretty toxic. Some people are even like “Okay,

this is not the place you should ask”. (P13)

Easy to forget details without a direct application

Lastly, participants had feelings of failure when trying to

learn programming as they tended to forget what they

learned over time.

For example, one participant who tried Codecademy to learn

JavaScript said he would not do it again because he kept for-

getting the concepts without applying the knowledge:

Programmers learn and write code on a regular basis. But if

you don't use it, you just forget it. So why would I put the effort

to learn something that would then just get incredibly rusty

and then forget half of it in six months anyway? (P17)

Similarly, another participant who took an introductory

course to learn “fundamentals of HTML” on Lynda.com

said that it was easy for him to forget the concepts because

he skipped the coding exercises for the sake of time:

They [Lynda.com] have optional exercises after each lecture...

But I mean all I want is just some conceptual level understanding

of what's going on. So I skipped the exercise. Sometimes you are

just like “It looks easy. I'll just test it later” and then you never do.

It turns out that I just forget the concepts very quick. (P8)

In some cases, conversational programmers could retain

what they learned for a short-term project or to satisfy an

immediate need, but not beyond. For example, an entrepre-

neur who once hired developers to build a website for her

company explained this phenomenon:

I only learn it when I need to use it. And then I promptly forget

it all. When we built our company's first website, I spent like 3

days locked in my room to learn some basic stuff like Word-

Press, HTML. But I can't recall anything now at all because I

didn't use it for a long time. (P1)

Sometimes participants learned terminologies in technical

conversations but would forget them after the first exposure.

For example, one participant explained how he had to:

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 511 Page 7

...look up the term again a month later because I just skimmed

the first paragraph to get a general idea [the first time] …but,

I forgot a lot afterwards...(P13)

In addition, one participant even felt nervous when she tried

to recall the definition of a “database”, which she had

learned recently from a coding bootcamp:

My palms are sweating...I am just nervous because I learned

[about databases] two weeks ago and I cannot remember

much right now. I might have to sign up for the same course

again. (P6)

As shown above, there were six key reasons why conversa-

tional programmers developed feelings of failure in their

pursuit of learning programming (summarized in Table 3).

THE PARADOX OF LEARNING PROGRAMMING

In the previous section, we examined how conversational

programmers approached learning programming and how

most of them felt like they failed, even after investing a lot of

time and effort. However, our findings reveal an interesting

paradox in the participants' perceptions of programming:

despite feelings of failure in their attempts to improve tech-

nical conversations, the majority (19/23) still wanted to keep

learning programming in the future if appropriate learning

resources were available. For example, a product manager

described this as, “a short path with acceptable opportunity

cost” (P13). Another participant reported that she only want-

ed to learn what is related with her project in the future:

I will definitely keep learning [programming] in the future,

because then you have a better understanding of the terminol-

ogy that's being used, and it saves much work for your job. But

I don't want to start everything from scratch, it's like a deep

pool. I only want to learn what's related with my project. (P19)

A common reason identified by the participants was that

having some background in programming allowed them to

better understand the work of their technical team members

and build empathy for them:

[programming] doesn't help so much with the technical conver-

sation... But I do have the feeling now that their [developers’]

work is extremely hard after I learned. I think it's given me a lot

more empathy on understanding that it’s not easy to do what you

want just because you envision being able to do it. (P7)

Another advantage of learning programming was having a

better sense of being able to estimate implementation time:

I feel like I'm much more generous in terms of time now. I un-

derstand it might take forever to write the small change. It's a

struggle to write even a little bit of code. It's all about debug-

ging and unknown errors. (P8)

Moreover, participants felt that they earned more respect

from developers as well. Learning programming helped

them gain credibility and build rapport with developers:

The programming people tend to be not interested in talking to

me [before]…Being a coder is a badge of honor, people re-

spect me more [now]. (P3)

Although the majority of participants failed in learning pro-

gramming, a small number of them did achieve success using

resources where they could connect with other conversational

programmers. For example, a participant who was a visual

designer actively searched and reached out to other designers

who were learning programming: “I'm on a Slack group, and

all of th ese Facebook groups and LinkedIn groups”. (P2)

Another participant who worked as a library archivist and

collaborated with developers on a project to digitize materials

explained how she benefited by being in the same room as

other archivists and librarians learning programming:

I think we often don’t receive enough training…and so those

sorts of [technical] workshops are great. It is a nice opportunity

to work through problems with other people who also need this

skill and don’t have the background in it. It's nice to have some-

one in a similar situation as me to talk to. (P11)

In summary, our findings reveal a paradox in conversational

programmers' perceptions of programming in that while they

feel like they failed, they still acknowledged the value of

learning programming under certain circumstances.

DISCUSSION

Our findings overall illustrate that the learning needs and

constraints of conversational programmers had some simi-

larities to other adult learners who have rigid schedules

[6,24,59] and prefer informal learning approaches [14,41].

However, we also found some critical differences among

these groups of learners. For example, in contrast to end-

user programmers who may prefer resources with rich im-

plementation details and “ready-to-go” examples [15], con-

versational programmers found such details to be distracting

and preferred to see more conceptual explanations. Although

CS teachers also do not need to build artifacts [43], they dif-

fer from conversational programmers as their needs are still

more syntax-oriented—they need to be able to teach low-

level concepts and create and grade coding assignments.

In this paper, our main contribution has been in providing

novel insights into how a broad range of professionals who

Takes too much time: Investing in learning programming

ended up requiring more time than what participants wanted to
devote given their busy schedules.

Too much focus on syntax and logic: Most of the resources

focused on programming syntax and logic which did not directly
help participants with their technical conversations.

Explanations are not relevant: The conceptual and applica-

tion-related explanations desired by the participants were not
always relevant nor available in the learning resources.

Difficult to assess the content’s reliability: Participants did

not feel confident enough to assess whether a given resource

contained accurate and reliable content.

Feelings of social isolation: Resources and learning environ-

ments that target CS students or professional programmers often
created feelings of social isolation among participants.

Easy to forget details: It was easy for participants to forget

programming definitions and details because they did not apply

what they learned directly on-the-job.

Table 3. Six common reasons for feelings of failure among

conversational programmers when using modern resources

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 511 Page 8

do not need to write code (e.g., archivist, artist, entrepreneur,

psychologist, event manager, medical instructor and visual

designer) use formal and informal approaches to learn pro-

gramming. We have also contributed insights into reasons

why modern learning resources fail these conversational pro-

grammers in their pursuits to improve technical conversa-

tions. We now reflect on the mismatch of expectations that

conversational programmers experience and how HCI and

learner-centered design [24] approaches can play a pivotal

role in better supporting this emerging learner population.

A Mismatch of Expectations

We learned that although almost all of the conversational

programmers in our study were interested in learning pro-

gramming to improve their conversations, in the end, about

75% of the participants did not feel that they achieved this

goal. Their narratives illustrated a mismatch of expectations

that manifested in two ways, described below.

Is programming knowledge even necessary?

The first mismatch occurred because conversational pro-

grammers often assumed that learning programming would

help them with grounding in technical conversations. Our

participants described their attempts in collectively learning

over 20 different programming languages even though they

did not need to write any code. However, their descriptions

and challenges of technical conversations revealed that these

learners were more interested in establishing a conceptual

understanding of terminologies, benefits and limitations of

technologies, and tradeoffs in software design and implemen-

tation decisions. Therefore, is pursuing programming even

the right approach for conversational programmers?

Future work could investigate why such misconceptions

form about programming in the first place. Perhaps with all

of the recent excitement around programming for all or

computational thinking being popularized in the press [48],

people tend to associate anything technical with program-

ming [16]. Another possibility is that people assume that

just because they are talking to programmers, they need to

understand the “programmers' language”. But, the kinds of

expertise and vocabulary that developers possess can take

years of education or experience to develop, so it is not

realistic to expect newcomers to master all the concepts

with introductory learning resources.

On the other hand, if conversational programmers do not

learn programming at all, is it even possible for them to

understand technical decisions, tradeoffs, or higher-level

concepts, such as machine learning or cloud-based architec-

ture? It may be the case that learning the basics of pro-

gramming and some technical jargon are important dimen-

sions of establishing this common ground that conversa-

tional programmers seek to establish [9,60].

Is my chosen learning resource even appropriate?

The second mismatch ensued when conversational program-

mers interacted with the same modern resources that are typ-

ically used by learners who want to eventually build artifacts

or solve computational problems. Such resources often fol-

low a more structured syntax-oriented curriculum (known as

“programming-first approach”) of introductory computer

science programs in universities [61]. All of this investment

in learning programming through these resources created a

rabbit hole effect for conversational programmers as they

were led down a path of struggling with programming syntax

and all of the other issues that novice programmers encounter

[34] while not getting much direct benefit for improving their

technical conversations.

Still, despite the mismatch in expectations and feelings of

failure, the majority of conversational programmers wanted

to keep learning programming if appropriate learning re-

sources were available, which suggests that HCI can play a

key role in designing suitable learner-centered resources.

Design Opportunities for Supporting Conversational
Programmers

Here we consider the design implications of our findings and

how we can better support conversational programmers.

Facilitating Discovery of Relevant and Reliable Content

Given the challenges that conversational programmers face

in spending time on learning resources and in sifting through

irrelevant and unreliable search results, future research can

look into facilitating discovery of relevant and reliable con-

tent. For example, we can explore how to create Wikipedia-

like curated overviews with small examples that are focused

on specific application areas. The goal here should be to

make them easily “skimmable” in a few minutes—similar

approaches have recently been seen in resources such as wik-

iHow [62] that focus on small bite-sized tutorials. How can

we create a wikiHow-like site for facilitating discovery of

programming concepts, and how would this scale?

At the same time, authoritativeness of learning resources is

important for this learner population and “trial and error”

[2,13,15,28] approaches that work for novice or end-user

programmers do not work for conversational programmers.

These learners may find little success in searching for pro-

gramming and debugging help in ad-hoc blogs and forums

where they can plug-and-play solutions. Instead, conversa-

tional programmers can benefit from resources and expla-

nations that are endorsed by leaders in the field to have con-

fidence that they are high-quality materials. There are op-

portunities for future work to investigate who these leaders

would be and how would they make contributions towards

endorsing a particular resource.

Explaining Concepts without Syntax and Logic

A key challenge that our findings raise for the HCI commu-

nity to consider is, can we actually teach someone useful

programming concepts without focusing on syntax and log-

ic? What would that even mean? What would be the ad-

vantages or disadvantages of doing so?

A popular approach that has been explored in research and

practice is the design of novice-friendly “drag-and-drop” [42]

programming languages and systems such as Alice [11],

Scratch [45], and Code.org [63] to make programming more

attractive for children [39,57] and other novices [21]. How-

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 511 Page 9

ever, none of our participants were familiar with such envi-

ronments and would likely not find them useful for improv-

ing their technical conversations because these approaches

still largely focus on the mechanics of programming.

Another approach may be to design courses with emphasis

on more conceptual instruction of computing concepts with-

out writing code [2,20,35,40,56]. For example, Cornell Uni-

versity has recently experimented with a non-programming

introduction to CS via concepts, such as in NLP and AI [35].

It may be possible to extend such an approach outside of the

classroom to also teach conversational programmers useful

concepts without getting into the mechanics of syntax. An-

other useful augmentation here may be to teach conversa-

tional programmers how to talk about a particular concept in

the context of a real-world development scenario. For exam-

ple, some online dictionaries offer the ability to not just view

the definition of a word, but to see how the word may be

used in a sentence. It may be fruitful to explore how such

interactive reference resources could be created for connect-

ing real-world context with programming-related concepts

for conversational programmers.

Generating Executive Summaries and Visual Explorations

Given that conversational programmers may only have an

ephemeral need to understand and apply some concepts, fu-

ture research can explore how to design interactive high-level

executive summaries or allow for more visual explorations of

such concepts. One approach could be presenting a compara-

tive or competitive analysis like an executive report contain-

ing the pros and cons to be delivered to a business executive

to help them make decisions. For instance, such a summary

could make it easy to glance at the pros and cons of neural

networks or weigh the benefits of using Amazon’s vs.

Google’s cloud services.

At the code level, perhaps there is a need for more visual

explorations like interactive neural net explorations [5], ex-

plorable explanations [64] or algorithm animation [4] to give

learners interactive visual ways to learn to gain intuitions

without writing any code, which is similar to the idea of data

analysis tools or prototyping tools that allow people to ex-

plore ideas and possibilities without writing code [65,66].

Building Conversational Programmers' Own Communities

We found that conversational programmers expressed feelings

of isolation when trying to learn from resources designed for

professional or end-user programmers. As discussed above,

there is some indication that the recommendations on learning

resources from other programmers create a mismatch of ex-

pectations. Therefore, it would be worth exploring if the per-

ceptions of conversational programmers would be different if

the recommendations came from other conversational pro-

grammers similar to them. There is an opportunity here for

HCI/CSCW to explore the benefits and drawback of social

and personalized recommendations for this learner group.

One design opportunity may be in creating a welcoming

community of like-minded peers and mentors, who are per-

haps not the stereotypical computer “geeks” or “insiders” as

described by many of our participants. There already are

learning communities emerging for certain non-traditional

learners, such as scientists [58], CS teachers [44], and even

product managers [9]. Similarly, we could build conversa-

tional programmers' own communities through formal work-

shops (e.g., dedicated bootcamps) or through online re-

sources and meetups. Learners can receive suggestions and

mentorship from experienced conversational programmers

who have gone through the same process or are currently

going through it. These communities can perhaps evaluate

existing resources from the perspective of their domain (e.g.,

similar work has been done to evaluate programming sys-

tems using techniques such as heuristic evaluation [33]).

Limitations and Future Work

Our focus was only on perceptions and learning strategies;

future work can use controlled studies to formally explore

learning outcomes of different interventions and approaches.

Although we had a diverse set of participants in terms of job

roles and experiences, we did not explore gender, occupa-

tion-specific learning goals, or other demographic differences

in responses. In addition, since our recruitment criteria ex-

plicitly mentioned an attempt to learn programming, we did

not have the chance to investigate "conversational technical

non-programmers", who did technical communication with

programmers but never attempted to learn programming.

This population is worthwhile to study in the future.

More importantly, when we talk about “grounding in com-

munication” [10], there are actors on both sides (technical

and non-technical) and our results so far paint a picture from

only one side. It should not be solely the job of conversation-

al programmers to make an investment in extra on-the-job

learning. Great software engineers should be both productive

at the job and good at communicating [37,50]. Moreover,

they should not only focus on effectively working with other

technical people, but also on better explaining their decisions

to people who are non-engineers. Our study opens a path for

future research to bridge the gap in technical conversations

from developers' perspectives as well.

CONCLUSION

In conclusion, we have contributed insights from conversa-

tional programmers across a wide range of job roles who ex-

perience challenges and try to learn programming to improve

their conversations. In particular, we have described their

learning approaches and struggles and highlighted six reasons

why modern resources designed for traditional learners, such

as CS students and professional programmers, are not appro-

priate for this learner population. We have also highlighted

ways in which HCI can play a pivotal role in designing learn-

ing resources and interactions that are suitable not only for

conversational programmers but also other members of socie-

ty who are increasingly wanting to develop programming and

technical literacy.

ACKNOWLEDGMENTS

This research was supported in part by the Natural Science

and Engineering Research Council of Canada (NSERC). We

thank Prashant Shashikumar and Azadeh Zamani Esfahani.

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 511 Page 10

REFERENCES

1. Khaled Albusays and Stephanie Ludi. 2016. Eliciting Pro-

gramming Challenges Faced by Developers with Visual

Impairments: Exploratory Study. In Proceedings of the 9th

International Workshop on Cooperative and Human As-

pects of Software Engineering (CHASE ’16), 82–85.

https://doi.org/10.1145/2897586.2897616

2. Tim Bell, Jason Alexander, Isaac Freeman, and Mick Grim-

ley. 2009. Computer science unplugged:school students do-

ing real computing without computers. New Zealand Jour-

nal of Applied Computing and Information Technology 13,

1: 20–29.

3. Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontche-

va, and Scott R. Klemmer. 2009. Two Studies of Opportun-

istic Programming: Interleaving Web Foraging, Learning,

and Writing Code. In Proceedings of the SIGCHI Confer-

ence on Human Factors in Computing Systems (CHI ’09),

1589–1598. https://doi.org/10.1145/1518701.1518944

4. Marc H. Brown. 1988. Algorithm Animation. MIT Press,

Cambridge, MA, USA.

5. Shan Carter and Daniel Smilkov. Tensorflow — Neural

Network Playground. Retrieved January 5, 2018 from

http://playground.tensorflow.org

6. Polina Charters, Michael J. Lee, Andrew J. Ko, and Dastyni

Loksa. 2014. Challenging Stereotypes and Changing Atti-

tudes: The Effect of a Brief Programming Encounter on

Adults’ Attitudes Toward Programming. In Proceedings of

the 45th ACM Technical Symposium on Computer Science

Education (SIGCSE ’14), 653–658.

https://doi.org/10.1145/2538862.2538938

7. Parmit K. Chilana, Celena Alcock, Shruti Dembla, Anson

Ho, Ada Hurst, Brett Armstrong, and Philip J. Guo. 2015.

Perceptions of non-CS majors in intro programming: The

rise of the conversational programmer. In 2015 IEEE Sym-

posium on Visual Languages and Human-Centric Compu-

ting (VL/HCC), 251–259.

https://doi.org/10.1109/VLHCC.2015.7357224

8. Parmit K. Chilana, Rishabh Singh, and Philip J. Guo. 2016.

Understanding Conversational Programmers: A Perspective

from the Software Industry. In Proceedings of the 2016

CHI Conference on Human Factors in Computing Systems

(CHI ’16), 1462–1472.

https://doi.org/10.1145/2858036.2858323

9. Ellen Chisa. 2014. Evolution of the Product Manager.

Queue 12, 9: 40:40–40:47.

https://doi.org/10.1145/2674600.2683579

10. Herbert H. Clark and Susan E. Brennan. 1991. Grounding

in Communication. In Perspectives on Socially Shared

Cognition, Lauren Resnick, Levine B, M. John, Stephanie

Teasley and D. (eds.). American Psychological Associa-

tion, 13–1991.

11. Stephen Cooper, Wanda Dann, and Randy Pausch. 2000.

Alice: A 3-D Tool for Introductory Programming Con-

cepts. In Proceedings of the Fifth Annual CCSC Northeast-

ern Conference on The Journal of Computing in Small Col-

leges (CCSC ’00), 107–116.

12. Juliet Corbin and Anselm Strauss. 2014. Basics of Qualita-

tive Research. SAGE.

13. Sarah D’Angelo and Andrew Begel. 2017. Improving

Communication Between Pair Programmers Using Shared

Gaze Awareness. In Proceedings of the 2017 CHI Confer-

ence on Human Factors in Computing Systems (CHI ’17),

6245–6290. https://doi.org/10.1145/3025453.3025573

14. Brian Dorn and Mark Guzdial. 2006. Graphic Designers

Who Program as Informal Computer Science Learners. In

Proceedings of the Second International Workshop on

Computing Education Research (ICER ’06), 127–134.

https://doi.org/10.1145/1151588.1151608

15. Brian Dorn and Mark Guzdial. 2010. Learning on the Job:

Characterizing the Programming Knowledge and Learning

Strategies of Web Designers. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Sys-

tems (CHI ’10), 703–712.

https://doi.org/10.1145/1753326.1753430

16. Chase Felker, Meg Charlton, and Joshua Oliver. 2013.

Maybe Not Everybody Should Learn to Code. Slate. Re-

trieved January 5, 2018 from

http://www.slate.com/articles/technology/future_tense/201

8/01/there_is_no_such_thing_as_the_blockchain.html

17. Sally Fincher. 2015. What Are We Doing when We Teach

Computing in Schools? Commun. ACM 58, 5: 24–26.

https://doi.org/10.1145/2742693

18. J. Michael Fitzpatrick, Ákos Lédeczi, Gayathri Narasim-

ham, Lee Lafferty, Réal Labrie, Paul T. Mielke, Aatish

Kumar, and Katherine A. Brady. 2017. Lessons Learned in

the Design and Delivery of an Introductory Programming

MOOC. In Proceedings of the 2017 ACM SIGCSE Tech-

nical Symposium on Computer Science Education

(SIGCSE ’17), 219–224.

https://doi.org/10.1145/3017680.3017730

19. Andrea Forte and Mark Guzdial. 2005. Motivation and

Non-Majors in Computer Science: Identifying Discrete

Audiences for Introductory Courses. IEEE Transactions on

Education 48, 2: 248–253.

https://doi.org/10.1109/TE.2004.842924

20. Kenneth J. Goldman. 2004. A Concepts-first Introduction to

Computer Science. In Proceedings of the 35th SIGCSE

Technical Symposium on Computer Science Education

(SIGCSE ’04), 432–436.

https://doi.org/10.1145/971300.971446

21. Paul Gross and Kris Powers. 2005. Evaluating Assessments

of Novice Programming Environments. In Proceedings of

the First International Workshop on Computing Education

Research (ICER ’05), 99–110.

https://doi.org/10.1145/1089786.1089796

22. Philip J. Guo. 2017. Older Adults Learning Computer Pro-

gramming: Motivations, Frustrations, and Design Opportu-

nities. In Proceedings of the 2017 CHI Conference on Hu-

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 511 Page 11

man Factors in Computing Systems (CHI ’17), 7070–7083.

https://doi.org/10.1145/3025453.3025945

23. Mark Guzdial. 2003. A Media Computation Course for

Non-majors. In Proceedings of the 8th Annual Conference

on Innovation and Technology in Computer Science Edu-

cation (ITiCSE ’03), 104–108.

https://doi.org/10.1145/961511.961542

24. Mark Guzdial. 2015. Learner-Centered Design of Compu-

ting Education: Research on Computing for Everyone. Syn-

thesis Lectures on Human-Centered Informatics 8, 6: 1–

165.

https://doi.org/10.2200/S00684ED1V01Y201511HCI033

25. Mark Guzdial and Andrea Forte. 2005. Design Process for a

Non-majors Computing Course. In Proceedings of the 36th

SIGCSE Technical Symposium on Computer Science Edu-

cation (SIGCSE ’05), 361–365.

https://doi.org/10.1145/1047344.1047468

26. Carolin D. Hardin and Matthew Berland. 2016. Learning to

Program Using Online Forums: A Comparison of Links

Posted on Reddit and Stack Overflow (Abstract Only). In

Proceedings of the 47th ACM Technical Symposium on

Computing Science Education (SIGCSE ’16), 723–723.

https://doi.org/10.1145/2839509.2851051

27. Kyle J. Harms, Evan Balzuweit, Jason Chen, and Caitlin

Kelleher. 2016. Learning Programming from Tutorials and

Code Puzzles: Children’s Perceptions of Value. In 2016

IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), 59–67.

https://doi.org/10.1109/VLHCC.2016.7739665

28. Cruz Izu, Amali Weerasinghe, and Cheryl Pope. 2016. A

Study of Code Design Skills in Novice Programmers Using

the SOLO Taxonomy. In Proceedings of the 2016 ACM

Conference on International Computing Education Re-

search (ICER ’16), 251–259.

https://doi.org/10.1145/2960310.2960324

29. Geoffrey James. 2017. Why Coding Bootcamps Don’t

Work. Inc.com. Retrieved January 5, 2018 from

https://www.inc.com/geoffrey-james/why-coding-

bootcamps-dont-work.html

30. Mary Beth Kery, Amber Horvath, and Brad Myers. 2017.

Variolite: Supporting Exploratory Programming by Data

Scientists. In Proceedings of the 2017 CHI Conference on

Human Factors in Computing Systems (CHI ’17), 1265–

1276. https://doi.org/10.1145/3025453.3025626

31. Ada S. Kim and Andrew J. Ko. 2017. A Pedagogical Anal-

ysis of Online Coding Tutorials. In Proceedings of the

2017 ACM SIGCSE Technical Symposium on Computer

Science Education (SIGCSE ’17), 321–326.

https://doi.org/10.1145/3017680.3017728

32. Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan

Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi,

Joseph Lawrance, Henry Lieberman, Brad Myers, Mary

Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan

Wiedenbeck. 2011. The State of the Art in End-user Soft-

ware Engineering. ACM Comput. Surv. 43, 3: 21:1–21:44.

https://doi.org/10.1145/1922649.1922658

33. Michael Kölling and Fraser McKay. 2016. Heuristic Evalu-

ation for Novice Programming Systems. Trans. Comput.

Educ. 16, 3: 12:1–12:30. https://doi.org/10.1145/2872521

34. Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Jä-

rvinen. 2005. A Study of the Difficulties of Novice Pro-

grammers. In Proceedings of the 10th Annual SIGCSE

Conference on Innovation and Technology in Computer

Science Education (ITiCSE ’05), 14–18.

https://doi.org/10.1145/1067445.1067453

35. Lillian Lee. 2002. A Non-Programming Introduction to

Computer Science via NLP, IR, and AI. In Proceedings of

the ACL-02 Workshop on Effective Tools and Methodolo-

gies for Teaching Natural Language Processing and Com-

putational Linguistics - Volume 1 (ETMTNLP ’02), 33–38.

https://doi.org/10.3115/1118108.1118113

36. Michael J. Lee and Andrew J. Ko. 2015. Comparing the

Effectiveness of Online Learning Approaches on CS1

Learning Outcomes. In Proceedings of the Eleventh Annual

International Conference on International Computing Edu-

cation Research (ICER ’15), 237–246.

https://doi.org/10.1145/2787622.2787709

37. Paul Luo Li, Andrew J. Ko, and Jiamin Zhu. 2015. What

Makes a Great Software Engineer? In Proceedings of the

37th International Conference on Software Engineering -

Volume 1 (ICSE ’15), 700–710.

38. Yihan Lu, I-Han Hsiao, and Qi Li. 2016. Exploring Online

Programming-Related Information Seeking Behaviors via

Discussion Forums. In 2016 IEEE 16th International Con-

ference on Advanced Learning Technologies (ICALT),

283–287. https://doi.org/10.1109/ICALT.2016.63

39. John H. Maloney, Kylie Peppler, Yasmin Kafai, Mitchel

Resnick, and Natalie Rusk. 2008. Programming by Choice:

Urban Youth Learning Programming with Scratch. In Pro-

ceedings of the 39th SIGCSE Technical Symposium on

Computer Science Education (SIGCSE ’08), 367–371.

https://doi.org/10.1145/1352135.1352260

40. Joe Marks, William Freeman, and Henry Leitner. 2001.

Teaching Applied Computing Without Programming: A

Case-based Introductory Course for General Education. In

Proceedings of the Thirty-second SIGCSE Technical Sym-

posium on Computer Science Education (SIGCSE ’01),

80–84. https://doi.org/10.1145/364447.364547

41. Victoria J. Marsick and Karen E. Watkins. 2001. Informal

and Incidental Learning. New Directions for Adult and

Continuing Education 2001, 89: 25–34.

https://doi.org/10.1002/ace.5

42. Paul Medlock-Walton, Kyle J. Harms, Eileen T. Kraemer,

Karen Brennan, and Daniel Wendel. 2014. Blocks-based

Programming Languages: Simplifying Programming for

Different Audiences with Different Goals. In Proceedings

of the 45th ACM Technical Symposium on Computer Sci-

ence Education (SIGCSE ’14), 545–546.

https://doi.org/10.1145/2538862.2538873

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 511 Page 12

43. Lijun Ni and Mark Guzdial. 2012. Who AM I?: Under-

standing High School Computer Science Teachers’ Profes-

sional Identity. In Proceedings of the 43rd ACM Technical

Symposium on Computer Science Education (SIGCSE ’12),

499–504. https://doi.org/10.1145/2157136.2157283

44. Lijun Ni, Mark Guzdial, Allison Elliott Tew, Briana Morri-

son, and Ria Galanos. 2011. Building a Community to

Support HS CS Teachers: The Disciplinary Commons for

Computing Educators. In Proceedings of the 42Nd ACM

Technical Symposium on Computer Science Education

(SIGCSE ’11), 553–558.

https://doi.org/10.1145/1953163.1953319

45. Mitchel Resnick, John Maloney, Andrés Monroy-

Hernández, Natalie Rusk, Evelyn Eastmond, Karen Bren-

nan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Sil-

verman, and Yasmin Kafai. 2009. Scratch: Programming

for All. Commun. ACM 52, 11: 60–67.

https://doi.org/10.1145/1592761.1592779

46. Christopher Scaffidi, Aniket Dahotre, and Yan Zhang.

2012. How Well Do Online Forums Facilitate Discussion

and Collaboration Among Novice Animation Program-

mers? In Proceedings of the 43rd ACM Technical Sympo-

sium on Computer Science Education (SIGCSE ’12), 191–

196. https://doi.org/10.1145/2157136.2157195

47. Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005.

Estimating the Numbers of End Users and End User Pro-

grammers. In 2005 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC’05), 207–214.

https://doi.org/10.1109/VLHCC.2005.34

48. Esther Shein. 2014. Should Everybody Learn to Code?

Commun. ACM 57, 2: 16–18.

https://doi.org/10.1145/2557447

49. Jonathan Sillito, Frank Maurer, Seyed Mehdi Nasehi, and

Chris Burns. 2012. What Makes a Good Code Example?: A

Study of Programming Q&A in StackOverflow. In Pro-

ceedings of the 2012 IEEE International Conference on

Software Maintenance (ICSM) (ICSM ’12), 25–34.

https://doi.org/10.1109/ICSM.2012.6405249

50. Edward K. Smith, Christian Bird, and Thomas Zimmer-

mann. 2016. Beliefs, Practices, and Personalities of Soft-

ware Engineers: A Survey in a Large Software Company.

In Proceedings of the 9th International Workshop on Co-

operative and Human Aspects of Software Engineering

(CHASE ’16), 15–18.

https://doi.org/10.1145/2897586.2897596

51. Elliot Soloway, Mark Guzdial, and Kenneth E. Hay. 1994.

Learner-centered Design: The Challenge for HCI in the

21st Century. interactions 1, 2: 36–48.

https://doi.org/10.1145/174809.174813

52. Sabine Sonnentag, Cornelia Niessen, and Sandra Ohly.

2004. Learning at work: training and development. Interna-

tional review of industrial and organizational psychology

19: 249–290.

53. Phit-Huan Tan, Choo-Yee Ting, and Siew-Woei Ling.

2009. Learning Difficulties in Programming Courses: Un-

dergraduates’ Perspective and Perception. In Proceedings

of the 2009 International Conference on Computer Tech-

nology and Development - Volume 01 (ICCTD ’09), 42–46.

https://doi.org/10.1109/ICCTD.2009.188

54. Kyle Thayer and Andrew J. Ko. 2017. Barriers Faced by

Coding Bootcamp Students. In Proceedings of the 2017

ACM Conference on International Computing Education

Research (ICER ’17), 245–253.

https://doi.org/10.1145/3105726.3106176

55. Christoph Treude, Ohad Barzilay, and Margaret-Anne Sto-

rey. 2011. How Do Programmers Ask and Answer Ques-

tions on the Web? (NIER Track). In 2011 33rd Interna-

tional Conference on Software Engineering (ICSE), 804–

807. https://doi.org/10.1145/1985793.1985907

56. Mark Urban-Lurain and Donald J. Weinshank. 2000. Is

there a role for programming in non-major computer sci-

ence courses? In 30th Annual Frontiers in Education Con-

ference. Building on A Century of Progress in Engineering

Education. Conference Proceedings (IEEE Cat.

No.00CH37135), T2B/7-T2B11 vol.1.

https://doi.org/10.1109/FIE.2000.897590

57. Linda Werner, Shannon Campe, and Jill Denner. 2012.

Children learning computer science concepts via Alice

game-programming. In Proceedings of the 43rd ACM tech-

nical symposium on Computer Science Education, 427–

432.

58. Greg Wilson. 2006. Software Carpentry: Getting Scientists

to Write Better Code by Making Them More Productive.

Computing in Science Engineering 8, 6: 66–69.

https://doi.org/10.1109/MCSE.2006.122

59. Chi Zhang and Guangzhi Zheng. 2013. Supporting Adult

Learning: Enablers, Barriers, and Services. In Proceedings

of the 14th Annual ACM SIGITE Conference on Infor-

mation Technology Education (SIGITE ’13), 151–152.

https://doi.org/10.1145/2512276.2512323

60. Will Non-Technical Product Managers Become Obsolete?

Retrieved January 5, 2018 from

https://www.forbes.com/sites/quora/2017/01/03/will-non-

technical-product-managers-become-obsolete

61. ACM Curricula Recommendations. Retrieved January 5,

2018 from http://www.acm.org/education/curricula-

recommendations

62. wikiHow - How to do anything. Retrieved January 5, 2018

from http://www.wikihow.com/Main-Page

63. Anybody can learn | Code.org. Retrieved January 5, 2018

from https://code.org/

64. Explorable Explanations. Retrieved January 5, 2018 from

http://explorabl.es/

65. Business Intelligence and Analytics | Tableau Software.

Retrieved January 5, 2018 from https://www.tableau.com/

66. Prototypes, Specifications, and Diagrams in One Tool |

Axure Software. Retrieved January 5, 2018 from

https://www.axure.com/

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 511 Page 13

